Rabideau, P. W. (1989). Editor. The Conformational Analysis of Cyclohexenes, Cyclohexadienes, and Related Hydroaromatic Compounds. New York: VCH Publishers.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3176-3187.
Tecklenburg, M. J. \& Laane, J. (1989). J. Am. Chem. Soc. 111, 6920-6926.
Valente, E. J., Eggleston, D. S. \& Schomaker, V. (1987). Acta Cryst. C43, 533-536.

Valente, E. J., Lingafelter, E. C., Porter, W. R. \& Trager, W. F. (1977). J. Med. Chem. 20, 1489-1493.

Valente, E. J., Santarsiero, B. D. \& Schomaker, V. (1979). J. Org. Chem. 44, 798-802.
Valente, E. J. \& Schomaker, V. (1984). Acta Cryst. C40, 10681070.

Valente, E. J. \& Trager, W. F. (1978). J. Med. Chem. 21, 141-143.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Histidyl Conformations and Short $\mathbf{N}-\mathbf{H} \cdots \mathbf{N}$ Hydrogen Bonds: Structure of D,L-Histidyl-L,D-histidine Pentahydrate

By Jeanette A. Krause, Paul W. Baures and Drake S. Eggleston
Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA

(Received 23 April 1990; accepted 15 January 1991)

Abstract

D,L-Histidyl-L,D-histidine pentahydrate, $\mathrm{C}_{12} \mathrm{H}_{16}{ }^{-}$ $\mathrm{N}_{6} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}, M_{r}=382 \cdot 38, F(000)=408$, crystallizes in the monoclinic space group $P c$ with the cell dimensions $\quad a=9.971(2), \quad b=4.745(2), \quad c=$ 19.572 (3) \AA and $\beta=96.08(1)^{\circ}, V=920.6 \AA^{3}, Z=2$, $D_{x}=1.379 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=1.083 \mathrm{~cm}^{-1}, \quad T=295 \mathrm{~K}$, Mo $K \alpha, \lambda=0.71073 \AA$. Final $R($ on $F)=0.040$ for 1658 observed reflections with $I \geq 3 \sigma(I)$. This dipeptide crystallizes in a zwitterionic form with protonation of the C -terminal imidazole ring. Both histidine units exist in the g^{+}or 'closed' conformation with $\mathrm{C} \alpha-\mathrm{C} \beta$ torsion angles of 67.2 (3) and $63.6(3)^{\circ}$. Principal torsion angles, $\omega=176.8(2), \psi_{1}$ $=161 \cdot 8(3)$ and $\varphi_{2}=-152 \cdot 1(3)^{\circ}$, are indicative of a highly extended trans conformation. Intramolecular hydrogen bonding occurs between the imidazole rings $\quad[\mathrm{N} 2 D-\mathrm{H} 2 D 1 \cdots \mathrm{~N} 1 D=2.724$ (4) $\AA]$. Intermolecular hydrogen bonding occurs between symmetry-related histidine molecules forming chains along the y axis and includes another short [2.764 (4) $\AA] \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction. The five water molecules occupy channels between adjacent histidine layers.

Introduction

Histidine, an important constituent of proteins which is frequently encountered in the active site of enzymes, has been studied extensively because of the ability of the imidazole moiety to act as a proton donor, proton acceptor or nucleophilic agent (Madden, McGandy \& Seeman, 1972). Secondly, the histidine unit has been observed to exist in two
molecular conformations, termed 'open' or 'closed' (Kistenmacher, Hunt \& Miarsh, 1972).

Conformational aspects of histidine are of interest since several conformations are possible for this residue in peptides and proteins. Here, we report the molecular structure of the racemic dipeptide, D,L-histidyl-L,D-histidine pentahydrate (His-His).

Experimental

D,L-Histidyl-L,D-histidine was kindly supplied by Dr K. Kopple (SmithKline Beecham Pharmaceuticals). Colorless plates were grown by slow evaporation of an aqueous ethanol solution.

For X-ray examination and data collection, a crystal of approximate dimensions $0.40 \times 0.08 \times$ 0.20 mm was mounted on a glass fiber with epoxy resin. Intensity data were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo $K \alpha$ radiation. Lattice parameters were obtained by least-squares refinement of the angular settings for 25 reflections lying in the 2θ range $30-34^{\circ}$. Intensity data (2624 reflections) were collected using variable speed $\omega-2 \theta$ scans with $2 \leq 2 \theta \leq 56^{\circ}$ under the following conditions: $0 \leq h \leq 13,0 \leq k \leq 6,-25 \leq l \leq 25$. Three standard reflections ($\overline{5} 33,2, \overline{1}, 13, \overline{2} 3 \overline{9}$) monitored every 3 h of X-ray exposure time showed nonsystematic intensity changes of $-2 \cdot 1 \%$; no correction for deterioration was made. Symmetryequivalent data were averaged, $R_{\mathrm{int}}=2.7 \%$ (on I), the 2222 unique reflections were corrected for Lorentz and polarization effects.

The structure was solved by a combination of direct methods with SHELXS86 (Sheldrick, 1985)

Table 1. Positional parameters and e.s.d.'s for histidylhistidine

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as $\left(8 \pi^{2} / 3\right) \times$ $\sum_{i} \Sigma_{j} U_{l j} a_{l}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.

	x	y	z	$B\left(\AA^{2}\right)$
Ol	0.144	$0 \cdot 3803$ (5)	0.380	$2 \cdot 57$ (4)
O^{\prime}	-0.1544 (3)	$0 \cdot 8568$ (6)	0.5414 (1)	$3 \cdot 18$ (5)
$\mathrm{O}^{\prime \prime}$	-0.1373 (2)	1.0786 (5)	0.4431 (1)	2.71 (4)
N1	$0 \cdot 2632$ (3)	0.6042 (6)	0.2719 (1)	2.54 (5)
N2	0.0931 (2)	$0 \cdot 8056$ (5)	0.4221 (1)	I.82 (4)
N1D	0.4449 (3)	0.6127 (7)	0.4689 (1)	$2 \cdot 85$ (6)
N2D	0.2971 (3)	0.8363 (7)	0.5649 (1)	2.70 (5)
N1E	$0 \cdot 6194$ (3)	$0 \cdot 3892$ (7)	0.4352 (2)	2.79 (6)
N2E	$0 \cdot 2542$ (3)	1.0647 (7)	0.6553 (2)	$3 \cdot 13$ (6)
Cl^{\prime}	$0 \cdot 1542$ (3)	0.6388 (6)	0.3796 (2)	1.58 (5)
C2 ${ }^{\prime}$	-0.1035 (3)	$0 \cdot 8923$ (7)	0.4865 (2)	1.94 (5)
Cl A	0.2373 (3)	0.7886 (6)	0.3293 (2)	1.75 (5)
C2A	0.0057 (3)	$0 \cdot 6827$ (7)	0.4696 (2)	1.77 (5)
C1B	0.3704 (3)	0.9080 (7)	0.3650 (2)	2.23 (6)
C2B	0.0871 (3)	$0 \cdot 5540$ (7)	0.5331 (2)	$2 \cdot 19$ (6)
CID	0.5703 (3)	0.5593 (8)	0.3815 (2)	2.65 (6)
C2D	$0 \cdot 1416$ (4)	0.9048 (8)	0.6343 (2)	2.78 (6)
CIE	$0 \cdot 5419$ (4)	0.428 (1)	$0 \cdot 4858$ (2)	$3 \cdot 27$ (8)
C2E	$0 \cdot 3441$ (4)	1.018 (1)	0.6128 (2)	$3 \cdot 46$ (8)
$\mathrm{Cl} G$	$0 \cdot 4621$ (3)	0.6973 (7)	0.4021 (2)	1.98 (5)
C2G	$0 \cdot 1686$ (3)	0.7582 (7)	0.5773 (2)	$2 \cdot 11$ (6)
OW1	$0 \cdot 5935$ (3)	0.0769 (7)	0.2467 (2)	4.76 (7)
OW2	-0.2002 (3)	$1 \cdot 3612$ (6)	0.6098 (1)	$3 \cdot 64$ (6)
OW3	-0.1361 (3)	$0 \cdot 1125$ (8)	0.3019 (2)	$4 \cdot 79$ (7)
OW4	-0.0507 (3)	$0 \cdot 6130$ (7)	0.2406 (2)	4.68 (7)
OW5	$0 \cdot 5683$ (3)	1.4282 (7)	0.6749 (2)	5.04 (8)

and the difference Fourier technique, and refined by full-matrix least squares. Non-H atoms were refined with isotropic displacement parameters, then with anisotropic displacement parameters. H-atom positions, including those for the waters, were located from difference Fourier maps. H-atom coordinates were fixed at their located positions along with isotropic displacement parameters assigned as $1.3 U$. The refinement converged $\left[(\Delta / \sigma)_{\max }<0.005\right]$ to values of the standard crystallographic agreement factors of $R=0.040, w R=0.051$ and $S=1.140$ for 1658 observations with $I \geq 3 \sigma(I)$ and 233 parameters. Weights were assigned to the data as $w=$ $1 / s^{2}(F)$ with $s^{2} F=\left[\sigma^{2}\left(I_{c}\right)+\left(0.06 F_{o}\right)^{2}\right]$. Scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV) except for H atoms (Stewart, Davidson \& Simpson, 1965). The effects of anomalous dispersion for non- H atoms were included. A final difference map showed $(\Delta \rho)_{\max }=$ $0 \cdot 220,(\Delta \rho)_{\text {min }}=-0.194 \mathrm{e}^{\AA^{-3}}$. Final atomic positional and equivalent isotropic thermal parameters for the non-H atoms are collected in Table 1.* All programs used were from the locally modified EnrafNonius (1979) SDP.

[^0]
Discussion

The molecular structure of D,L-histidyl-L,D-histidine pentahydrate is shown in Fig. 1. The unit-cell packing diagram is given in Fig. 2. Principal bond distances and bond angles are collected in Tables 2 and 3 , respectively.

D,L-Histidyl-L,D-histidine pentahydrate crystallizes in a zwitterionic form with protonation of the Cterminal imidazole ring. An intramolecular hydrogen bond exists between the two imidazole rings, N2D$\mathrm{H} 2 D 1 \cdots \mathrm{~N} 1 D=2 \cdot 724$ (4) \AA and 168°, and is consistent with the study by Gorbitz (1989) on hydrogen bonding in amino acids and peptides [for hydrogen bonding of the type $\operatorname{His}-\mathrm{N}(\pi) \cdots \mathrm{H}-\mathrm{N}: \mathrm{N} \cdots \mathrm{N}=$ $2 \cdot 886-3.045, \quad \mathrm{~N} \cdots \mathrm{H}=1.73-2.15 \AA, \quad \mathrm{~N}-\mathrm{H} \cdots \mathrm{N}=$ $161 \cdot 3-177 \cdot 5^{\circ}$]. The shorter $\mathrm{N} \cdots \mathrm{N}$ distance observed here results from the involvement of protonated

Fig. 1. ORTEP drawing of histidylhistidine showing 50% thermal ellipsoid probability for the non-H atoms, H atoms as small spheres of arbitrary size and atomic labeling scheme.

Fig. 2. Stereo unit-cell drawing of histidylhistidine indicating both intra- and intermolecular hydrogen bonding. Hydrogen bonding interactions are indicated by single lines. The a axis is along the horizontal at a rotation of 50° while the c axis runs vertically.

Table 2. Principal bond distances (\AA) for histidylhistidine with e.s.d.'s in parentheses

$\mathrm{O} 1-\mathrm{Cl}^{\prime}$	$1.231(4)$	$\mathrm{N} 1 E-\mathrm{C} 1 E$	$1.333(5)$
$\mathrm{O}^{\prime}-\mathrm{C} 2^{\prime}$	$1.247(4)$	$\mathrm{N} 2 E-\mathrm{C} 2 D$	$1.381(5)$
$\mathrm{O}^{\prime \prime}-\mathrm{C}^{\prime}$	$1.247(4)$	$\mathrm{N} 2 E-\mathrm{C} 2 E$	$1.305(5)$
$\mathrm{N} 1-\mathrm{C} 1 A$	$1.467(4)$	$\mathrm{C} 1-\mathrm{C} 1 A$	$1.527(4)$
$\mathrm{N} 2-\mathrm{C} 1^{\prime}$	$1.342(4)$	$\mathrm{C} 2^{\prime}-\mathrm{C} 2 A$	$1.536(4)$
$\mathrm{N} 2-\mathrm{C} 2 A$	$1.461(4)$	$\mathrm{C} 1 A-\mathrm{Cl} B$	$1.542(4)$
$\mathrm{N} 1 D-\mathrm{Cl} E$	$1.32(5)$	$\mathrm{C} 2 A-\mathrm{C} 2 B$	$1.537(4)$
$\mathrm{N} 1 D-\mathrm{C} 1 G$	$1.394(4)$	$\mathrm{C} 1 B-\mathrm{C} 1 G$	$1.490(5)$
$\mathrm{N} 2 D-\mathrm{C} 2 E$	$1.322(5)$	$\mathrm{C} 2 B-\mathrm{C} 2 G$	$1.482(5)$
$\mathrm{N} 2 D-\mathrm{C} 2 G$	$1.380(4)$	$\mathrm{C} 1 D-\mathrm{Cl} G$	$1.360(4)$
$\mathrm{N} 1 E-\mathrm{C} 1 D$	$1.374(5)$	$\mathrm{C} 2 D-\mathrm{C} 2 G$	$1.365(5)$

Table 3. Principal bond angles $\left({ }^{\circ}\right)$ for histidylhistidine with e.s.d.'s in parentheses

$\mathrm{Cl}{ }^{\prime}-\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}$	$120 \cdot 0$ (2)	$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 2 B$	111.9 (2)
$\mathrm{Cl} E-\mathrm{N} 1 D-\mathrm{Cl} G$	$105 \cdot 5$ (3)	$\mathrm{C} 2 \cdot \mathrm{C} 2 A-\mathrm{C} 2 B$	114.2 (2)
$\mathrm{C} 2 E-\mathrm{N} 2 D-\mathrm{C} 2 G$	108.4 (3)	$\mathrm{Cl} A-\mathrm{Cl} B-\mathrm{Cl} G$	$115 \cdot 4$ (3)
$\mathrm{Cl} D-\mathrm{N} 1 E-\mathrm{Cl} E$	$107 \cdot 5$ (3)	$\mathrm{C} 2 A-\mathrm{C} 2 B-\mathrm{C} 2 \mathrm{G}$	114.9 (3)
$\mathrm{C} 2 \mathrm{D}-\mathrm{N} 2 E-\mathrm{C} 2 E$	108.0 (3)	$\mathrm{N} 1 E-\mathrm{ClD}-\mathrm{ClG}$	106.6 (3)
$\mathrm{Ol}-\mathrm{Cl}^{\prime}-\mathrm{N} 2$	122.5 (3)	$\mathrm{N} 2 E-\mathrm{C} 2 D-\mathrm{C} 2 G$	107.4 (3)
$\mathrm{Ol}-\mathrm{Cl}^{\prime}-\mathrm{Cl} A$	121.5 (3)	$\mathrm{N} 1 D-\mathrm{Cl} E-\mathrm{N} 1 E$	111.8 (3)
$\mathrm{N} 2-\mathrm{Cl}^{\prime}-\mathrm{Cl} A$	116.0 (2)	$\mathrm{N} 2 D-\mathrm{C} 2 E-\mathrm{N} 2 E$	110.3 (3)
$\mathrm{O}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{O}^{\prime \prime}$	$125 \cdot 2$ (3)	$\mathrm{N} 1 D-\mathrm{ClG}-\mathrm{Cl} B$	$121 \cdot 3$ (3)
$\mathrm{O}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 2 A$	117.4 (3)	$\mathrm{N} 1 D-\mathrm{ClG}-\mathrm{Cl} D$	$108 \cdot 7$ (3)
$\mathrm{O}^{\prime \prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 2 A$	$117 \cdot 3$ (3)	$\mathrm{ClB}-\mathrm{Cl}-\mathrm{Cl} D$	$130 \cdot 1$ (3)
$\mathrm{N} 1-\mathrm{Cl} A-\mathrm{Cl}^{\prime}$	111.5 (2)	$\mathrm{N} 2 D-\mathrm{C} 2 G-\mathrm{C} 2 B$	122.3 (3)
$\mathrm{N} 1-\mathrm{Cl} A-\mathrm{Cl} B$	110.7 (3)	$\mathrm{N} 2 D-\mathrm{C} 2 \mathrm{G}-\mathrm{C} 2 D$	105.9 (3)
$\mathrm{Cl}^{\prime}-\mathrm{Cl} A-\mathrm{Cl} B$	112.2 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 2 G-\mathrm{C} 2 \mathrm{D}$	$131 \cdot 8$ (3)
$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 2^{\prime}$	111.2 (2)		

histidine. The carboxyl group is ionized with $\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{O}^{\prime}=1.247(4), \quad \mathrm{C} 2^{\prime}-\mathrm{O}^{\prime \prime}=1 \cdot 247$ (4) $\AA \quad$ and $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime \prime}=125.3(3)^{\circ}$. These values are consistent with other terminal histidine residues (average values $\quad \mathrm{C}-\mathrm{O}^{\prime}=1 \cdot 243, \quad \mathrm{C}-\mathrm{O}^{\prime \prime}=1 \cdot 252 \AA \quad$ and $\mathrm{O}^{\prime}-\mathrm{C}-\mathrm{O}^{\prime \prime}=126 \cdot 3^{\circ}$) (Averbuch-Pouchot, Durif \& Guitel, 1988; Edington \& Harding, 1974; Kistenmacher, Hunt \& Marsh, 1972; Lehmann, Koetzle \& Hamilton, 1972; Madden, McGandy \& Seeman, 1972; Madden, McGandy, Seeman, Harding \& Hoy, 1972; Oda \& Koyama, 1972; Bennett, Davidson, Harding \& Morelle, 1970).

The bond distances and angles for the protonated imidazole ring are comparable to those found in the imidazolium cation (Blessing, 1986) or other histidinium cations (Averbuch-Pouchot, Durif \& Guitel, 1988; Roman, Gutierrez-Zorrilla, Luque \& Vegas, 1987; Blessing, 1986; Herbstein \& Kapon, 1979; Fuess, Hohlwein \& Mason, 1977; Oda \& Koyama, 1972; Bennett, Davidson, Harding \& Morelle, 1970; Donohue \& Caron, 1964). The non-protonated imidazole ring has distances and angles comparable to imidazole (Martinez-Carrera, 1966) or other neutral histidine residues (Edington \& Harding, 1974; Lehmann, Koetzle \& Hamilton, 1972; Madden, McGandy \& Seeman, 1972; Madden, McGandy, Seeman, Harding \& Hoy, 1972). The differences observed in the $\mathrm{N} \varepsilon-\mathrm{C} \varepsilon$ bonds [N1E$\mathrm{C} 1 E=1.333$ (4) and $\mathrm{N} 2 E-\mathrm{C} 2 E=1.305(4) \AA]$ and the $\mathrm{N} \delta, \mathrm{C} \varepsilon$ and $\mathrm{C} \gamma$ angles $[\mathrm{C} 1 E-\mathrm{N} 1 D-\mathrm{Cl} G=$
$105.5(3), \quad \mathrm{C} 2 E-\mathrm{N} 2 D-\mathrm{C} 2 G=108 \cdot 4(3), \quad \mathrm{N} 1 D-$ $\mathrm{C} 1 E-\mathrm{N} 1 E=111.8(3), \quad \mathrm{N} 2 D-\mathrm{C} 2 E-\mathrm{N} 2 E=$ 110.3 (3), $\mathrm{N} 1 D-\mathrm{C} 1 G-\mathrm{C} 1 D=108.7$ (3) and $\mathrm{N} 2 D-$ $\left.\mathrm{C} 2 G-\mathrm{C} 2 D=105 \cdot 9(3)^{\circ}\right]$ between the protonated and the non-protonated rings reflect the aromaticity of the former. Both imidazole rings are planar.

The main chain of D, L-histidyl-L, D -histidine may be described as a highly extended trans conformation. The principal torsion angles as defined by the IUPAC-IUB Commission on Biochemical Nomenclature (1970) are $\omega=176.8$ (2), $\psi_{1}=161 \cdot 8$ (3) and $\varphi_{2}=-152 \cdot 1$ (3) ${ }^{\circ}$. The side-chain torsion angles are 67.2 (3) and $63.6(3)^{\circ}$ for the N - and C-terminal residues, respectively, for χ^{1} defined as $\mathrm{N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma$.

Conformational aspects of the imidazole side chain are of interest since several low-energy conformations are possible; however, statistical studies (Ashida, Tsunogae, Tanaka \& Yamane, 1987; Ponder \& Richards, 1987; Benedetti, Morelli, Nemethy \& Scheraga, 1983; Bhat, Sasisekharan \& Vijayan, 1979; Janin, Wodak, Levitt \& Maigret, 1978; Finkelstein \& Ptitsyn, 1977) indicate that all histidine residues may be classified in three distinct groups depending on the interactions between the $\mathrm{C} \gamma$ methylene and the neighboring peptide groups. Sidechain conformations are denoted as g^{+}, t and g^{-} (Fig. 3) corresponding to $\chi^{1}=+60,180$ and -60°,

$$
\begin{aligned}
& g+ \\
& \chi^{1}=+60^{\circ}
\end{aligned}
$$

gauche to both NH and CO

t $\chi^{1}=180^{\circ}$
trans to NH, gauche to CO

g^{-}
$\chi=-60^{\circ}$
gauche to NH, trans to CO

Fig. 3. Newman projections down the $\mathrm{C} \beta-\mathrm{C} \alpha$ bond of the side-chain conformations g^{+}, t and g^{+}corresponding to $\chi_{1}=$ $+60,180$ and -60°, respectively.

Table 4. Comparison of torsion angles (${ }^{\circ}$) for various histidines

Compound	ω	ψ	φ	χ^{1}	x	χ^{21}	χ^{22}
D,L-His-L,D-His ${ }^{\text {a }}$ (N -terminal)	176.9 (2)	161.8 (3)	-152.1 (3)	67.2 (3)	- 58.1 (4)	83.4 (4)	-97.0 (4)
(C-terminal)				63.6 (3)	-63.9 (3)	-86.0 (4)	93.8 (4)
L-N-Ac-His. $\mathrm{H}_{2} \mathrm{O}^{\text {b }}$ (A)	172.2	- 19.2	-152.0	79.6	-44.0	-75.6	97.6
(B)	-174.8	-14.9	-80.2	-62.6	172.3	-87.0	92.1
L-His.L-Asp. $\mathrm{H}_{2} \mathrm{O}^{\text {c }}$ (${ }^{\text {a }}$		-25.7		167.0	47.5	76.4	-99.4
(AS)		-32.0		167.6	49.7	77.7	-100.5
(B)		-8.0		64.7	-61.2	-120.4	58.2
(BS)		-12.1		60.9	-68.0	- 119.6	63.4
L-Met-Glu-His-Phe. $\mathrm{H}_{2} \mathrm{O}^{\text {d }}$	$174 \cdot 5$	171.2	-171.7	55.8	-62.4	73.8	-103.3
L-Pyro-Glu-L-His	$173 \cdot 3$	138.7	-80.6	-177.9	61.7	56.7	-127.6
L-His-L-Ser:Gly-L-Gln. $6 \mathrm{H}_{2} \mathrm{O}^{\prime}$	$173 \cdot 5$	128.1	-135.9	-70.9	169.0	77.8	- $100 \cdot 2$
N -Ac-L-His-NHMe ${ }^{\text {a }}$	$175 \cdot 2\left(\omega_{1}\right)$	155.6	- 71.6	- 58.5	179.1	- 55.5	124.6
N-Ac-His- $\mathrm{NH}_{2}{ }^{\text {b }}$	177.1	153.2	- 70.9	-60.0	177.3	- 54.2	126.8
β-Ala-His ${ }^{\prime}{ }^{\prime}$	174.9	$130 \cdot 5$	-92.9	-178.7	60.7	62.3	-119.1
Boc-Pro-His-NHMe'	$176.8\left(\omega_{1}\right)$	- 19.6	-70.4	59.9		-86.1	94.6
Boc-Pro-His (π-Me) $\mathrm{NHMe}^{\text {j }}$	$-178.4\left(\omega_{t}\right)$	29.8	-118.3	-46.0	$-171 \cdot 2$	-72.7	103.1
Boc-Pro-His(τ-Me) NHMe^{\prime}	-179.8 (ω_{t})	7.4	-90.8	58.8	-68.5	-48.6	136.4
[${ }^{\text {boc-Pro-His-NHMe] }}$ [PF ${ }_{6}{ }^{\text {] }}$	$176.6\left(\omega_{1}\right)$	159.5	131.0	-74.4	168.9	69.6	
L-His(orthorhombic) ${ }^{\text {k }}$		$155.1\left(\psi_{2}\right)$		-59.2	179.8	56.8	-123.2
L-His(monoclinic) ${ }^{\text {d }}$		$154.4\left(\psi_{2}\right)$		-61.7	179.8	58.0	-122.9
dL-His ${ }^{\text {m }}$		$170.7\left(\psi_{2}\right)$		-86.7	150.9	-68.1	114.1
L-His. $\mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}^{\boldsymbol{n}}$		$179.5\left(\psi_{2}\right)$		71.5	- 52.1		61.1
dL-His. $\mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}^{\circ}$		162.6 (ψ_{2})		-61.9	179.4	-70.6	107.7
L-His. $\mathrm{H}_{3} \mathrm{PO}_{4}{ }^{\text {P }}$		$158.4\left(\psi_{2}\right)$		-68.0	172.7	-75.6	104.2
L-His.TMA ${ }^{4}$		$150.5\left(\psi_{2}\right)$		-63.3	177.5	87.6	-89.6
L-His. $\mathrm{HClO}_{4}{ }^{\text { }}$		$161.6\left(\psi_{2}\right)$		-60.4	176.8	-49.7	$132 \cdot 2$

Notes: (a) This work. For comparison purposes, all torsion angles have been referred to a common l-configuration. (b) Kistenmacher, Hunt \& Marsh (1972). (c) Bhat \& Vijayan (1978). (d) Admiraal \& Vos (1983). (e) Cotrait \& Allard (1973). (f) Suresh \& Vijayan (1985). (g) Harada \& litaka (1977). (h) Pfeiffer, Reck \& Oehlke (1985). (i) Itoh, Yamane, Ashida \& Kakudo (1977). (j) Aubry, Vlassi \& Marraud (1986). (k) Madden, McGandy \& Seeman (1972). ($)$ Madden, McGandy, Seeman, Harding \& Hoy (1972). (m) Edington \& Harding (1974). (n) Donohue \& Caron (1964). (o) Bennett, Davidson, Harding \& Morelle (1970). (p) Blessing (1986). (q) Herbstein \& Kapon (1979). (r) Roman, Gutierrez-Zorrilla, Luque \& Vegas (1987).
respectively, with g^{-}corresponding to the sterically most favored and g^{+}the sterically least favored conformation. In the nomenclature proposed by Bhat \& Vijayan (1978) these conformations are termed 'closed', 'open II' and 'open I', respectively, based on the torsion angle $\mathrm{N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma$ denoted here as χ^{1}. In Table 4 several histidine-containing structures are compared according to torsion angles and indeed the structures fall into these three distinct conformations. Both side chains of histidylhistidine exist in the 'closed' or g^{+}conformation which places the imidazole ring gauche to both the carbonyl and amino groups. This otherwise energetically unfavorable juxtaposition may be facilitated through formation of the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (see above). It should be noted that in nomenclature first proposed by Kistenmacher, Hunt \& Marsh (1972) they use the torsion angle $\mathrm{C}^{\prime}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma$ to describe their 'closed' $(x=$ $\pm 60^{\circ}$) and 'open' $\left(\chi=180^{\circ}\right)$ conformations. This designation does not change the classification of the histidylhistidine presented here; however, it would change the classification of several histidines as listed in Table 4. It is recommended that the g^{+}, t, g^{-} designations based on the $\mathrm{N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma$ torsion angle be used exclusively, rather than the 'open/ closed' designations based on either χ^{1} or χ, to avoid future discrepancies in histidine classifications.

Bhat, Sasisekharan \& Vijayan (1979) and Benedetti, Morelli, Nemethy \& Scheraga (1983) have also suggested, based on the χ^{2} angles of a combined set
of phenylalanine, tyrosine, tryptophan and histidine structures, assuming twofold symmetry about the $\mathrm{C} \beta-\mathrm{C} \gamma$ bond and neglecting any hydrogenbonding interactions, that the magnitude of the torsion angle χ^{2} is correlated with χ^{1} as follows: when $\chi^{1}=+60^{\circ}$ then χ^{2} is centered around 90°, for $\chi^{1}=$ 180 or -60° then χ^{2} is either less than 90 or greater than 90°, respectively. The side-chain torsion angles of histidylhistidine $\left[\chi^{1}=67 \cdot 2(3), \chi^{21}=83 \cdot 4(4), \chi^{22}\right.$ $=-97.0(4)^{\circ}$ for the N -terminal residue and $\chi^{1}=$ $63 \cdot 6(3), \chi^{21}=-86 \cdot 0(4), \chi^{22}=93 \cdot 8(4)^{\circ}$ for the C terminal residue] are consistent with the correlation. It is not surprising that the torsion angles are clustered around $\pm 90^{\circ}$ since this is a minimum-energy conformation. In this conformation the ring is perpendicular to the plane defined by the $\mathrm{C} \alpha, \mathrm{C} \beta$ and $\mathrm{C} \gamma$ atoms and is parallel to the plane defined by the main-chain atoms $\mathrm{N}, \mathrm{C} \alpha$ and C^{\prime}.

The generalization inherent in previous surveys may mask differences in the range of values adopted by χ^{21} and χ^{22} which arise as a result of the type of ring bonded to $\mathrm{C} \beta$. Examination of the torsion angles in the histidine-containing structures collected in Table 4 indicates a wider range of values for χ^{21} (-48.6 to -120.4 and 56.7 to 87.6°) and $\chi^{22}(-89.6$ to -123.2 and 58.2 to 136.4°) as compared to χ^{1} ($-46 \cdot 0$ to $-86 \cdot 7,55 \cdot 8$ to $79 \cdot 6$ and $167 \cdot 0$ to $178 \cdot 7^{\circ}$). Greater scatter in the χ^{2} angles arises from decreased steric interactions of the ring as a result of its increased distance from the main chain. Differences occurring between χ^{21} and χ^{22} may be attributed to

Table 5. Intermolecular hydrogen-bonding interactions (\AA, ${ }^{\circ}$)

$\mathrm{Nl} \cdots \mathrm{OW} 4$	$3 \cdot 124$ (4)	$\mathrm{N} 1-\mathrm{H} 12 \cdots \mathrm{OW} 4$	136	Symmetry operation 1, 000
H12 \cdots OW 4	$2 \cdot 36$			
$\mathrm{N} 2 \cdots \mathrm{Ol}$	2.907 (3)	$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Ol}$	146	1, 0-10
$\mathrm{H} 2 \cdots \mathrm{Ol}$	2.08			
$\mathrm{N} 1 E^{\cdots} \mathrm{O}^{\prime \prime}$	2.828 (3)	$\mathrm{N} 1 E-\mathrm{H} \mid E 1 \cdots \mathrm{O}^{\prime \prime}$	172	$1,1-10$
$\mathrm{H} \mid E 1 \cdots{ }^{\prime \prime}$	1.96			
$\mathrm{N} 2 E \cdots \mathrm{~N} 1$	2.764 (4)	$\mathrm{N} 2 E-\mathrm{H} 2 E 2 \cdots 1$	171	2, 020
$\mathrm{H} 2 E 2 \cdots \mathrm{~N} 1$	1.76			
OW1 $\cdots \mathrm{OW} 3$	$2 \cdot 801$ (4)	$\mathrm{OW} 1-\mathrm{HW} 11 \cdots \mathrm{OW} 3$	176	1. 100
HWll \cdots OW 3	1.77			
OW1 $\cdots \mathrm{O} W 5$	2.777 (4)	$\mathrm{OW} 1-\mathrm{H} W 12 \cdots \mathrm{OW}$	162	2, 01-1
HW12 \cdots O $W 5$	1.99			
$\mathrm{OW} 2 \cdots \mathrm{O}^{\prime}$	2.768 (4)	$\mathrm{O} W 2-\mathrm{H} W 21 \cdots \mathrm{O}^{\prime}$	166	1, 0-10
$\mathrm{H} W 21 \cdots \mathrm{O}^{\prime}$	1.91			
$\mathrm{O} W 2 \cdots \mathrm{O}^{\prime}$	2.803 (4)	$\mathrm{OW} 2-\mathrm{H} W 22 \cdots \mathrm{O}^{\prime}$	169	1,000
$\mathrm{H} W 22 \cdots \mathrm{O}^{\prime}$	1.88			
OW3 $\cdots{ }^{\prime \prime}$	2.769 (4)	OW3- $\mathrm{H} W 31 \cdots{ }^{\prime \prime}$	167	1,010
$\mathrm{H} W 31 \cdots{ }^{\prime \prime}$	1.82			
OW3 $\cdots \mathrm{OW} 4$	$2 \cdot 832$ (4)	$\mathrm{OW} 3-\mathrm{H} W 32 \cdots \mathrm{O} W 4$	171	1,000
HW32 \cdots O 4	1.86			
OW4 $\cdots \mathrm{O} / 2$	$2 \cdot 826$ (4)	OW4-HW41 \cdots OW2	175	2, 020
HW41•OW2	1.95			
OW4 $\cdots \mathrm{OW} 3$	2.827 (4)	OW4- $\mathrm{HW} 42 \cdots \mathrm{OW} 3$	163	1,010
HW42 \cdots O 3	1.96			
OW5 $\cdots \mathrm{O} / 2$	2.770 (4)	OW5- $\mathrm{H} W 51 \cdots \mathrm{OW} 2$	174	1, 100
HW51 \cdots OW2	1.85			
OW5 $\cdots \mathrm{OWl}$	2.735 (5)	OW5- ${ }^{\text {W }}$ W52 $\cdots \mathrm{O} W 1$	167	2, 020
HW52 $\cdots \mathrm{OW} 1$	1.84			

the geometry of the imidazole ring, which lacks twofold symmetry, to the smaller size of the imidazole ring as compared to phenyl, and to the hydrogen-bonding interactions of the nitrogen atoms (Benedetti, Morelli, Nemethy \& Scheraga, 1983).

Intermolecular hydrogen bonding (Table 5) occurs between the amide group of symmetry-related molecules $\left[\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Ol}=2.907\right.$ (3) \AA and 146°] along the y axis and between the imidazole nitrogen, $\mathrm{N} 1 E$, and the carboxyl oxygen, $\mathrm{O}^{\prime \prime}\left[\mathrm{N} 1 E-\mathrm{H} 1 E 1 \cdots \mathrm{O}^{\prime \prime}=\right.$ 2.828 (4) \AA and 172°]. The imidazole ring also participates in an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with the amine nitrogen, $\mathrm{N} 1[\mathrm{~N} 2 E-\mathrm{H} 2 E 2 \cdots \mathrm{~N} 1=2.764$ (4) \AA and 171°]. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond in histidylhistidine is similar to that in 5-fluorouracil-9ethylhypoxanthine $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=2.73 \AA) \quad(\mathrm{Kim} \quad \&$ Rich, 1967) but is rather short when compared to other $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (2.90-3.0 \AA) (Voet $\&$ Rich, 1970; Prasad \& Govil, 1980). This short distance indicates a strong interaction on the same order as $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions, even though it is generally thought that $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bonds are weaker. In addition, hydrogen-bonding interac-
tions occur between the carboxyl oxygen, O^{\prime}, and $\mathrm{O} W 2\left[\mathrm{O} W 2-\mathrm{H} W 21 \cdots \mathrm{O}^{\prime}=2.768\right.$ (4) \AA and 166°; $\mathrm{O} W 2-\mathrm{H} W 22 \cdots \mathrm{O}^{\prime}=2.803$ (4) \AA and 169°] and also between the amine nitrogen, N1, and OW4 [N1$\mathrm{H} 12 \cdots \mathrm{OW} 4=3 \cdot 124$ (4) \AA and 136°].

An extensive network of hydrogen-bonding interactions also exists between the five water molecules which occupy channels in the $x y$ plane of the crystal lattice as indicated in Fig. 2. Closer examination of the hydrogen-bonding patterns of the water molecules indicates that bonding in the x direction occurs between $\mathrm{O} W 3-\mathrm{O} W 1-\mathrm{O} W 5-\mathrm{O} W 2-\mathrm{O} W 4$ and in the y direction between $\mathrm{O} W 4-\mathrm{O} W 3-\mathrm{O} W 1$ and $\mathrm{O} W 5-\mathrm{O} W 1-\mathrm{O} W 2$ to form sheets in the $x y$ plane. The bonding with respect to the individual water molecules may be classified as type $\mathrm{I} A$ and type II A according to Jeffrey \& Maluszynska (1990). Type I A water participates in a three-center bond (an acceptor for one hydrogen bond and a donor for two hydrogen bonds), whereas type $\mathrm{II} A$ has water in a four-center bond (two acceptor hydrogen bonds and two donor hydrogen bonds). In this structure, OWl and $\mathrm{O} W 5$ both participate in type $\mathrm{I} A$ while $\mathrm{O} W 2$, $\mathrm{O} W 3$ and $\mathrm{O} W 4$ participate in type II A bonding. The bond distances and angles observed range from $2 \cdot 735-2 \cdot 832 \AA$ and $163-176^{\circ}$, respectively, and fall within normal ranges for $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions (Mitra \& Ramakrishnan, 1977). It has generally been observed that water molecules which accept one hydrogen bond (type $\mathrm{I} A$) are more common than those that accept two hydrogen bonds (type II A) by a factor of 1.4 (Jeffrey \& Maluszynska, 1990). It is interesting to note that in histidylhistidine type II A hydrogen bonds favor type I A hydrogen bonds by a factor of $1 \cdot 3$.

This work was supported in part by grant No. GM39S26-02 from the National Institutes of Health. JAK thanks the NIH for postdoctoral support under this grant.

References

Admiraal, G. \& Vos, A. (1983). Acta Cryst. C39, 82-87.
Ashida, T., Tsunogae, Y., Tanaka, I. \& Yamane, T. (1987). Acta Cryst. B43, 212-218.
Aubry, A., Vlassi, M. \& Marraud, M. (1986). Int. J. Pept. Protein Res. 28, 637-648.
Averbuch-Pouchot, M. T., Durif, A. \& Guitel. T. C. (1988). Acta Cryst. C44, 890-892.
Benedetti, E., Morelli, G., Nemethy, G. \& Scheraga, H. A. (1983). Int. J. Pept. Protein Res. 22, 1-15.

Bennett, I., Davidson, A. G. H., Harding, M. M. \& Morelle, I. (1970). Acta Cry'st. B26, 1722-1729.

Bhat, T. N., Sasisekharan, V. \& Vijayan, M. (1979). Int. J. Pepi. Protein Res. 13, 170-184.
Bhat, T. N. \& Vijayan, M. (1978). Acta Cryst. B34, 2556-2565.
Blessing, R. H. (1986). Acta Cry'st. B42, 613-621.
Cotrait, M. \& Allard, M. (1973). C. R. Acad. Sci. Ser. C, 276, 1671-1674.
Donohue, J. \& Caron, A. (1964). Acta Cryst. 17, 1178-1180.

Edington, P. \& Harding, M. M. (1974). Acta Cryst. B30, 204-206.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Finkelstein, A. V. \& Ptitsyn, O. B. (1977). Biopolymers, 16, 469-495.
Fuess, H., Hohlwein, D. \& Mason, S. A. (1977). Acta Cryst. B33, 654-659.
Gorbitz, C. H. (1989). Acta Cryst. B45, 390-395.
Harada, Y. \& Iitaka, Y. (1977). Acta Cryst. B33, 250-252.
Herbstein, F. H. \& Kapon, M. (1979). Acta Cryst. B35, 1614-1619.
Itoh, H., Yamane, T., Ashida, T. \& Kakudo, M. (1977). Acta Cryst. B33, 654-659.
iUPAC-IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Janin, J., Wodak, S., Levitt, M. \& Maigret, B. (1978). J. Mol. Biol. 125, 357-386.
Jeffrey, G. A. \& MaluszynsKa, H. (1990). Acta Cryst. B46, 546-549.
Kim, S.-H. \& Rich, A. (1967). Science, 158, 1046-1048.
Kistenmacher, T. J., Hunt, D. J. \& Marsh, R. E. (1972). Acta Cryst. B28, 3352-3361.
Lehmann, M. S., Koetzle, T. F. \& Hamilton, W. C. (1972). Int. J. Pept. Protein Res. 4, 229-239.

Madden, J. J., McGandy, E. L. \& Seeman, N. C. (1972). Acta Cryst. B28, 2377-2382.
Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. \& Hoy, A. (1972). Acta Cryst. B28, 2382-2389.

Martinez-Carrera, S. (1966). Acta Cryst. 20, 783-789.
Mitra, J. \& Ramakrishnan, C. (1977). Int. J. Pept. Protein Res. 9, $27-48$.
Oda, K. \& Koyama, H. (1972). Acta Cryst. B28, 639-642.
Pfeiffer, D., Reck, G. \& Oehlke, J. (1985). Crystallogr. Res. Technol. 20, 1345-1350.
Ponder, J. W. \& Richards, F. M. (1987). J. Mol. Biol. 193, 775-791.
Prasad, N. \& Govil, G. (1980). Proc. Indian Acad. Sci. Chem. Sci. 89, 253-262.
Roman, P., Gutierrez-Zorrilla, J. M., Luque, A. \& Vegas, A. (1987). J. Crystallogr. Spectrosc. Res. 17, 585-595.

Sheldrick, G. M. (1985). SHELX86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3176-3187.
Suresh, C. G. \& Vijayan, M. (1985). Int. J. Pept. Protein Res. 26, 329-336.
Voet, D. \& Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183-265.

Structural Comparison of a gem-Dichlorodiarylcyclopropane Antiestrogen and Three of its Derivatives

By M. B. Hossain, J. L. Wang and D. van der Helm
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA

and R. A. Magarian, M. T. Griffin and B. W. Day
Department of Medicinal Chemistry, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA

(Received 5 March 1990; accepted 16 January 1991)

Abstract

The pure antiestrogenic activity of compound (1) gave the impetus to synthesize a series of its derivatives (2)-(4). Structural features of these compounds are compared. Compound (1): 1,1-dichloro-cis-2,3diphenylcyclopropane, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2}, M_{r}=263 \cdot 2$, orthorhombic, $P b c a, a=19.627$ (7), $b=19.460$ (6), $c=$ $6 \cdot 670$ (2) $\AA, \quad V=2547 \cdot 5 \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.372 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu($ Mo $K \alpha)=$ $4.3 \mathrm{~cm}^{-1}, F(000)=1088, T=138 \mathrm{~K}, R=0.026$ for 1923 observed reflections. Compound (2): 1,1-dichloro-cis-2,3-bis(4-methoxyphenyl)cyclopropane, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}, M_{r}=323 \cdot 2$, monoclinic, $P 2_{1} / c, a=$ $16 \cdot 540$ (1),$\quad b=7.4749$ (7), $\quad c=12.333$ (3) $\AA, \quad \beta=$ 91.53 (2) ${ }^{\circ}, V=1524.2 \AA^{3}, Z=4, D_{x}=1.408 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu(\mathrm{Cu} K \alpha)=37.0 \mathrm{~cm}^{-1}$, $F(000)=672, \quad T=163 \mathrm{~K}, \quad R=0.031 \quad$ for 2919

0108-7681/91/040511-11\$03.00
observed reflections. Compound (3): 1,1-dichloro-cis-2-(4-benzyloxyphenyl)-3-phenylcyclopropane, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}, M_{r}=369 \cdot 3$, monoclinic, $P 2_{1}{ }^{\prime} a, a=$ 21.064 (3) $, \quad b=14.749(2), \quad c=5.8222$ (8) $\AA, \quad \beta=$ $95.48(2)^{\circ}, V=1800.5 \AA^{3}, Z=4, D_{x}=1.362 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=31.5 \mathrm{~cm}^{-1}$, $F(000)=768, \quad T=163 \mathrm{~K}, \quad R=0.032 \quad$ for 3256 observed reflections. Compound (4): 1,1-dichloro-trans-2-(4-acetoxyphenyl)-3-phenylcyclopropane, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}, \quad M_{r}=321 \cdot 2$, monoclinc, $P 2_{1} / n, \quad a=$ 16.555 (4),$\quad b=12.297$ (2), $\quad c=7.439$ (1) $A, \quad \beta=$ $98.31(2)^{\circ}, V=1498.5 \AA^{3}, Z=4, D_{x}=1.423 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu($ Mo $K \alpha)=3.8 \mathrm{~cm}^{-1}$, $F(000)=664, \quad T=163 \mathrm{~K}, \quad R=0.034$ for 2474 observed reflections. The crystal structure determinations show that the relative conformation of the two aryl rings in all four structures are quite similar. In this conformation one of the phenyl rings is in a © 1991 International Union of Crystallography

[^0]: * Lists of H-atom positions, anisotropic displacement parameters, torsion angles, least-squares planes and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53909 (24 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

